554 research outputs found

    Convergence towards linear combinations of chi-squared random variables: a Malliavin-based approach

    Get PDF
    We investigate the problem of finding necessary and sufficient conditions for convergence in distribution towards a general finite linear combination of independent chi-squared random variables, within the framework of random objects living on a fixed Gaussian space. Using a recent representation of cumulants in terms of the Malliavin calculus operators Γi\Gamma_i (introduced by Nourdin and Peccati in \cite{n-pe-3}), we provide conditions that apply to random variables living in a finite sum of Wiener chaoses. As an important by-product of our analysis, we shall derive a new proof and a new interpretation of a recent finding by Nourdin and Poly \cite{n-po-1}, concerning the limiting behaviour of random variables living in a Wiener chaos of order two. Our analysis contributes to a fertile line of research, that originates from questions raised by Marc Yor, in the framework of limit theorems for non-linear functionals of Brownian local times

    Stochastic Differential Equations Driven by Fractional Brownian Motion and Standard Brownian Motion

    Full text link
    We prove an existence and uniqueness theorem for solutions of multidimensional, time dependent, stochastic differential equations driven simultaneously by a multidimensional fractional Brownian motion with Hurst parameter H>1/2 and a multidimensional standard Brownian motion. The proof relies on some a priori estimates, which are obtained using the methods of fractional integration, and the classical Ito stochastic calculus. The existence result is based on the Yamada-Watanabe theorem.Comment: 21 page

    Mixed fractional stochastic differential equations with jumps

    Full text link
    In this paper, we consider a stochastic differential equation driven by a fractional Brownian motion (fBm) and a Wiener process and having jumps. We prove that this equation has a unique solution and show that all its moments are finite

    A nonlinear stochastic heat equation: Hölder continuity and smoothness of the density of the solution

    Get PDF
    In this paper, we establish a version of the Feynman-Kac formula for multidimensional stochastic heat equation driven by a general semimartingale. This Feynman-Kac formula is then applied to study some nonlinear stochastic heat equations driven by nonhomogeneous Gaussian noise: first, an explicit expression for the Malliavin derivatives of the solutions is obtained. Based on the representation we obtain the smooth property of the density of the law of the solution. On the other hand, we also obtain the Hölder continuity of the solutions.postprin

    Stochastic differential equation involving Wiener process and fractional Brownian motion with Hurst index H>1/2H> 1/2

    Full text link
    We consider a mixed stochastic differential equation driven by possibly dependent fractional Brownian motion and Brownian motion. Under mild regularity assumptions on the coefficients, it is proved that the equation has a unique solution

    Logarithmic asymptotics of the densities of SPDEs driven by spatially correlated noise

    Full text link
    We consider the family of stochastic partial differential equations indexed by a parameter \eps\in(0,1], \begin{equation*} Lu^{\eps}(t,x) = \eps\sigma(u^\eps(t,x))\dot{F}(t,x)+b(u^\eps(t,x)), \end{equation*} (t,x)\in(0,T]\times\Rd with suitable initial conditions. In this equation, LL is a second-order partial differential operator with constant coefficients, σ\sigma and bb are smooth functions and F˙\dot{F} is a Gaussian noise, white in time and with a stationary correlation in space. Let p^\eps_{t,x} denote the density of the law of u^\eps(t,x) at a fixed point (t,x)\in(0,T]\times\Rd. We study the existence of \lim_{\eps\downarrow 0} \eps^2\log p^\eps_{t,x}(y) for a fixed y∈Ry\in\R. The results apply to a class of stochastic wave equations with d∈{1,2,3}d\in\{1,2,3\} and to a class of stochastic heat equations with d≥1d\ge1.Comment: 39 pages. Will be published in the book " Stochastic Analysis and Applications 2014. A volume in honour of Terry Lyons". Springer Verla
    • …
    corecore